Istituto di Istruzione Superiore "P. Aldi"

Sezione Liceo Classico

Programma di MATEMATICA

Classe VB

A.S.2022/2023

Docente: Lucia Serpico

Testo: Matematica.azzurro, Bergamini Barozzi Trifone, vol. 5, Zanichelli

Le funzioni e le loro caratteristiche:

Le funzioni reali e le loro proprietà. Il dominio di una funzione. Gli zeri di una funzione.

I limiti delle funzioni e il calcolo dei limiti:

Intorni di un punto e punti di accumulazione. Limite finito di una funzione in un punto (definizione, significato e verifica). Limite destro e sinistro di una funzione in un punto. Limite infinito di una funzione in un punto, limite finito di una funzione per x che tende a più o meno infinito, limite infinito di una funzione per x che tende a più o meno infinito. Teorema dell'unicità del limite, teorema del confronto(*). Limiti notevoli (sono stati dimostrati solo il limite notevole relativo al seno e al coseno).

Il limite della somma algebrica di due funzioni(*), del prodotto di due funzioni(*), del quoziente di

due funzioni (*), della potenza(*). Forme indeterminate: $+\infty - \infty$, $0.\infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$; limite di una funzione polinomiale per $x \to \infty$ e limite di una somma o differenza di radicali; forma

indeterminata $\stackrel{\omega}{=}$ e limite di una funzione razionale fratta per $x \to \infty$; forma indeterminata e limite di una funzione razionale fratta per $x \to c$.

Le Funzioni continue:

Definizione di funzione continua in un punto e in un intervallo. Esempi di funzioni continue. Punti di discontinuità di una funzione: prima, seconda e terza specie. Gli asintoti di una funzione : orizzontali, verticali e obliqui (*). Grafico probabile di una funzione.

La Derivata di una Funzione e i Teoremi del Calcolo Differenziale:

Definizione e significato geometrico di rapporto incrementale di una funzione in un punto. Definizione e significato geometrico di derivata di una funzione in un punto. Retta tangente al grafico di una funzione. Punti stazionari. La continuità e la derivabilità. Derivate Fondamentali : derivata di una funzione costante; derivata della funzioni seno, coseno ;derivata della funzione esponenziale con base e (*); derivata della funzione logaritmica (base e) (*); derivata della funzione $y = x^n$ (dimostrazione fino ad n=2). Derivata del prodotto di una costante per una funzione e della somma algebrica di funzioni. (*) Derivata del prodotto di due funzioni. (*) . Derivata del quoziente di due funzioni (*). Derivata di una funzione composta(*).

Massimi e minimi di una funzione . Le derivate di ordine superiore al primo .Convessità e concavità di una funzione.

I teoremi sulle funzioni derivabili: il Teorema di De L'Hospital (*).

N.B. (*) sta a indicare che non si richiede la dimostrazione del teorema.

Lo studio delle Funzioni:

- 1.il dominio della funzione;
- 2. eventuali simmetrie;
- 3.le coordinate degli eventuali punti di intersezione del grafico della funzione con gli assi cartesiani;
- 4.il segno della funzione;
- 5.il comportamento della funzione agli estremi del dominio;
- 6. la derivata prima, il segno della derivata prima; ricerca di massimi, minimi.
- 7. Concavità e studio della derivata seconda.
- E' stato trattato in modo completo solo lo studio delle funzioni razionali.

Integrali:

Integrale indefinito; integrali indefiniti immediati; cenno all'integrazione per parti.

L'insegnante Lucia Serpico